giagrad.Tensor.var#
- Tensor.var(axis=None, ddof=1, keepdims=False)[source]#
- Calculates the variance over the axis specified by - axis.- The variance (\(\sigma^2\)) is calculated as: \[\sigma^2 = \frac{1}{N-\text{ddof}}\sum_{i=0}^{N-1}(x_i-\bar{x})^2\]- If keepdims is True, the output tensor is of the same size as the input except in the - axiswhere it is of size 1. Otherwise, every- axisis squeezed, leading to an output tensor with fewer dimensions. If no- axisis supplied all data is reduced to a scalar value.- Parameters:
- axis¶ ((int, ...) or int or None, default: None) – The dimension or dimension to reduce. If None, var reduces all dimensions. 
- ddof¶ (int, default: 1) – Degrees of freedom substracted to N. - ddof=1equals sample variance,- ddof=0equals population variance.
- keepdims¶ (bool, default: False) – Whether te output tensor should retain the reduced dimensions. 
 
 - Examples - >>> a = Tensor.empty(2, 2, 4, dtype=int).uniform(-10, 10) >>> a tensor: [[[ 3 6 2 -5] [ 7 3 -4 -8]] ... [[ 1 2 -6 6] [ 4 9 0 -5]]] >>> a.var() tensor: 24.808594 fn: Div >>> a.var((1, 2), ddof=1) tensor: [30. 26.26785714] fn: Div >>> a.std((1, 2), ddof=1)**2 tensor: [30. 26.26785714] fn: Pow