giagrad.Tensor.var#
- Tensor.var(axis=None, ddof=1, keepdims=False)[source]#
Calculates the variance over the axis specified by
axis.The variance (\(\sigma^2\)) is calculated as:
\[\sigma^2 = \frac{1}{N-\text{ddof}}\sum_{i=0}^{N-1}(x_i-\bar{x})^2\]If keepdims is True, the output tensor is of the same size as the input except in the
axiswhere it is of size 1. Otherwise, everyaxisis squeezed, leading to an output tensor with fewer dimensions. If noaxisis supplied all data is reduced to a scalar value.- Parameters:
axis¶ ((int, ...) or int or None, default: None) – The dimension or dimension to reduce. If None, var reduces all dimensions.
ddof¶ (int, default: 1) – Degrees of freedom substracted to N.
ddof=1equals sample variance,ddof=0equals population variance.keepdims¶ (bool, default: False) – Whether te output tensor should retain the reduced dimensions.
Examples
>>> a = Tensor.empty(2, 2, 4, dtype=int).uniform(-10, 10) >>> a tensor: [[[ 3 6 2 -5] [ 7 3 -4 -8]] ... [[ 1 2 -6 6] [ 4 9 0 -5]]] >>> a.var() tensor: 24.808594 fn: Div >>> a.var((1, 2), ddof=1) tensor: [30. 26.26785714] fn: Div >>> a.std((1, 2), ddof=1)**2 tensor: [30. 26.26785714] fn: Pow