giagrad.Tensor.leakyrelu#

Tensor.leakyrelu(neg_slope=0.01) Tensor[source]#

Creates a new Tensor applying Leaky Rectified Linear Unit (Leaky ReLU) function to data. See Leaky ReLU .

\[\begin{split}out_i = \begin{cases} data_i \ \ if \ \ data_i > 0 \\ \text{neg_slope} \times data_i \ \ if \ \ x \leq 0 \\ \end{cases}\end{split}\]
Parameters:

neg_slope (float) – Controls de angle of the negative slope (which only affects negative input values).

Examples

>>> t = Tensor.empty(2, 3, requires_grad=True).uniform(-1, 1)
>>> t
tensor: [[-0.83589154  0.8874637  -0.465633  ]
         [-0.5879877   0.22095676 -0.0592072 ]]
>>> d = t.leakyrelu(neg_slope=3)
>>> d
tensor: [[-2.5076747   0.8874637  -1.396899  ]
         [-1.7639632   0.22095676 -0.17762159]] fn: LeakyReLU(neg_slope=3)
>>> d.backward()
>>> t.grad
array([[3., 1., 3.],
       [3., 1., 3.]], dtype=float32)