giagrad.Tensor.silu#
- Tensor.silu(beta=1.0) Tensor [source]#
Returns a new Tensor with element-wise Sigmoid-Weighted Linear Unit (SiLU) function, also called Swish. See Swish.
For numerical stability SiLU is computed with numpy.logaddexp.
\[out_i = \frac{data_i}{(1 + \exp(\text{beta} \times -data_i))}\]- Parameters:
beta¶ (float) – Hyperparameter for Swish formulation.
Examples
>>> t = Tensor.empty(2, 3).uniform(-10, 10) >>> t tensor: [[ 5.4958744 0.13549101 -4.5210676 ] [-1.7155124 5.2369795 -7.6546626 ]] >>> t.silu() tensor: [[ 5.4734135e+00 7.2327957e-02 -4.8648320e-02] [-2.6153007e-01 5.2092857e+00 -3.6252895e-03]] fn: SiLU(beta=1.0)