giagrad.nn.SoftPlus#
- class giagrad.nn.SoftPlus(*args, **kwargs)[source]#
Applies element-wise \(\text{SoftPlus}(x) = \frac{1}{\text{beta}} \cdot \log(1 + \exp(\text{beta} \times data_i))\).
For numerical stability the implementation reverts to the linear function when \(data_i \times \text{beta} > \text{limit}\).
See also
- Variables:
beta (float) – The \(\beta\) value for the Softplus formulation.
limit (float) – Data times beta above this reverts to a linear function.